Spontaneous formation of nanometer scale tubular vesicles in aqueous mixtures of lipid and block copolymer amphiphiles.
نویسندگان
چکیده
Many common amphiphiles self-assemble in water to produce heterogeneous populations of discrete and symmetric but polydisperse and multilamellar vesicles isolating the encapsulated aqueous core from the surrounding bulk. But when mixtures of amphiphiles of vastly different elastic properties co-assemble, their non-uniform molecular organization can stabilize lower symmetries and produce novel shapes. Here, using high resolution electron cryomicroscopy and tomography, we identify the spontaneous formation of a membrane morphology consisting of unilamellar tubular vesicles in dilute aqueous solutions of binary mixtures of two different amphiphiles of vastly different origins. Our results show that aqueous phase mixtures of a fluid-phase phospholipid and an amphiphilic block copolymer spontaneously assume a bimodal polymorphic character in a composition dependent manner: over a broad range of compositions (15-85 mol% polymer component), a tubular morphology co-exists with spherical vesicles. Strikingly, in the vicinity of equimolar compositions, an exclusively tubular morphology (Lt; diameter, ∼15 nm; length, >1 μm; core, ∼2.0 nm; wall, ∼5-6 nm) emerges in an apparent steady state. Theory suggests that the spontaneous stabilization of cylindrical vesicles, unaided by extraneous forces, requires a significant spontaneous bilayer curvature, which in turn necessitates a strongly asymmetric membrane composition. We confirm that such dramatic compositional asymmetry is indeed produced spontaneously in aqueous mixtures of a lipid and polymer through two independent biochemical assays - (1) reduction in the quenching of fluorophore-labeled lipids and (2) inhibition in the activity of externally added lipid-hydrolyzing phospholipase A2, resulting in a significant enrichment of the polymer component in the outer leaflet. Taken together, these results illustrate the coupling of the membrane shape with local composition through spontaneous curvature generation under conditions of asymmetric distribution of mixtures of disparate amphiphiles.
منابع مشابه
Spontaneous unilamellar polymer vesicles in aqueous solution.
A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential ...
متن کاملPolypeptide vesicles with densely packed multilayer membranes.
Multilamellar membranes are important building blocks for constructing self-assembled structures with improved barrier properties, such as multilamellar lipid vesicles. Polymeric vesicles (polymersomes) have attracted growing interest, but multilamellar polymersomes are much less explored. Here, we report the formation of polypeptide vesicles with unprecedented densely packed multilayer membran...
متن کاملHierarchy in Block Copolymer Morphology
In the recent years, the study of block copolymers has received special attention from polymer scientists, as it has proved to be of a great importance in a variety of fields like life-sciences, tissue engineering, drug delivery, and nanotechnology and material sciences. This has led to a thorough investigation of the “hierarchy of the block copolymer morphology” i.e. the microscopic level chan...
متن کاملBlending of diblock and triblock copolypeptide amphiphiles yields cell penetrating vesicles with low toxicity.
We prepared dual hydrophilic triblock copolypeptide vesicles that form both micron and nanometer scale vesicles in aqueous media. The incorporation of terminal homoarginine segments into methionine sulfoxide-based vesicles was found to significantly enhance their cellular uptake compared to a non-ionic control. We also demonstrated that diblock and triblock copolypeptides with similar hydrophob...
متن کاملAmphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2017